Building Custom Tools

Create specialized tools for your agents' unique requirements with comprehensive tool development patterns

Building Custom Tools

This example demonstrates how to create sophisticated custom tools for RCrewAI agents, covering tool architecture, testing strategies, integration patterns, and advanced tool composition techniques. Learn to build tools that extend agent capabilities for specialized use cases.

Overview

Our custom tool development system includes:

  • Tool Architect - Design and architecture of custom tools
  • Tool Developer - Implementation and integration
  • Tool Tester - Quality assurance and validation
  • Documentation Specialist - Tool documentation and guides
  • Integration Manager - Tool deployment and integration
  • Development Coordinator - Project oversight and standards

Complete Implementation

require 'rcrewai'
require 'json'
require 'net/http'
require 'uri'

# Configure RCrewAI for tool development
RCrewAI.configure do |config|
  config.llm_provider = :openai
  config.temperature = 0.3  # Precise for tool development
end

# ===== CUSTOM TOOL EXAMPLES =====

# Advanced API Integration Tool
class AdvancedAPITool < RCrewAI::Tools::Base
  def initialize(**options)
    super
    @name = 'advanced_api_client'
    @description = 'Advanced API client with authentication, caching, and error handling'
    @base_url = options[:base_url]
    @api_key = options[:api_key]
    @cache = {}
    @rate_limiter = RateLimiter.new(options[:requests_per_minute] || 60)
  end
  
  def execute(**params)
    validate_params!(params, required: [:endpoint], optional: [:method, :data, :headers, :cache_ttl])
    
    action = params[:action] || 'request'
    
    case action
    when 'request'
      make_api_request(params)
    when 'batch_request'
      make_batch_requests(params[:requests])
    when 'clear_cache'
      clear_cache
    when 'get_stats'
      get_usage_statistics
    else
      "Advanced API Tool: Unknown action #{action}"
    end
  end
  
  private
  
  def make_api_request(params)
    endpoint = params[:endpoint]
    method = (params[:method] || 'GET').upcase
    cache_ttl = params[:cache_ttl] || 300 # 5 minutes default
    
    # Check cache first for GET requests
    if method == 'GET' && cached_response = get_from_cache(endpoint)
      return format_response(cached_response, from_cache: true)
    end
    
    # Rate limiting
    @rate_limiter.wait_if_needed
    
    begin
      # Simulate API request
      response_data = simulate_api_response(endpoint, method, params[:data])
      
      # Cache GET responses
      if method == 'GET'
        cache_response(endpoint, response_data, cache_ttl)
      end
      
      format_response(response_data)
      
    rescue => e
      handle_api_error(e, params)
    end
  end
  
  def make_batch_requests(requests)
    results = []
    
    requests.each_with_index do |request, index|
      @rate_limiter.wait_if_needed
      
      begin
        response = simulate_api_response(request[:endpoint], request[:method] || 'GET', request[:data])
        results << {
          index: index,
          request: request,
          response: response,
          status: 'success'
        }
      rescue => e
        results << {
          index: index,
          request: request,
          error: e.message,
          status: 'error'
        }
      end
    end
    
    {
      total_requests: requests.length,
      successful: results.count { |r| r[:status] == 'success' },
      failed: results.count { |r| r[:status] == 'error' },
      results: results
    }.to_json
  end
  
  def simulate_api_response(endpoint, method, data = nil)
    # Simulate different types of API responses
    case endpoint
    when /\/users/
      simulate_user_api_response(method, data)
    when /\/analytics/
      simulate_analytics_api_response
    when /\/search/
      simulate_search_api_response(data)
    else
      simulate_generic_response(method)
    end
  end
  
  def simulate_user_api_response(method, data)
    case method
    when 'GET'
      {
        users: [
          { id: 1, name: 'John Doe', email: 'john@example.com', role: 'admin' },
          { id: 2, name: 'Jane Smith', email: 'jane@example.com', role: 'user' }
        ],
        total: 2,
        page: 1,
        per_page: 10
      }
    when 'POST'
      {
        id: 3,
        name: data&.dig('name') || 'New User',
        email: data&.dig('email') || 'new@example.com',
        role: data&.dig('role') || 'user',
        created_at: Time.now.iso8601
      }
    when 'PUT', 'PATCH'
      {
        id: data&.dig('id') || 1,
        name: data&.dig('name') || 'Updated User',
        email: data&.dig('email') || 'updated@example.com',
        updated_at: Time.now.iso8601
      }
    when 'DELETE'
      { message: 'User deleted successfully', id: data&.dig('id') || 1 }
    end
  end
  
  def simulate_analytics_api_response
    {
      metrics: {
        page_views: 15420,
        unique_visitors: 3245,
        bounce_rate: 0.32,
        average_session_duration: 180
      },
      time_period: '7d',
      generated_at: Time.now.iso8601
    }
  end
  
  class RateLimiter
    def initialize(requests_per_minute)
      @requests_per_minute = requests_per_minute
      @requests = []
    end
    
    def wait_if_needed
      now = Time.now
      # Remove requests older than 1 minute
      @requests.reject! { |time| now - time > 60 }
      
      if @requests.length >= @requests_per_minute
        sleep_time = 60 - (now - @requests.first)
        sleep(sleep_time) if sleep_time > 0
        @requests.shift
      end
      
      @requests << now
    end
  end
end

# Data Processing Tool
class DataProcessingTool < RCrewAI::Tools::Base
  def initialize(**options)
    super
    @name = 'data_processor'
    @description = 'Advanced data processing with transformation and analysis capabilities'
    @processors = {}
    @transforms = {}
  end
  
  def execute(**params)
    action = params[:action]
    
    case action
    when 'process_csv'
      process_csv_data(params[:data], params[:processing_rules])
    when 'analyze_dataset'
      analyze_dataset(params[:data], params[:analysis_type])
    when 'transform_data'
      transform_data(params[:data], params[:transformations])
    when 'validate_schema'
      validate_data_schema(params[:data], params[:schema])
    when 'generate_report'
      generate_data_report(params[:data], params[:report_config])
    else
      "Data Processor: Unknown action #{action}"
    end
  end
  
  private
  
  def process_csv_data(data, processing_rules)
    # Simulate CSV processing
    processed_data = {
      original_rows: data.is_a?(Array) ? data.length : 1000,
      processed_rows: 0,
      errors: [],
      warnings: [],
      transformations_applied: [],
      processing_time: Time.now
    }
    
    processing_rules.each do |rule|
      case rule[:type]
      when 'filter'
        apply_filter_rule(processed_data, rule)
      when 'transform'
        apply_transform_rule(processed_data, rule)
      when 'validate'
        apply_validation_rule(processed_data, rule)
      when 'aggregate'
        apply_aggregation_rule(processed_data, rule)
      end
    end
    
    processed_data[:processed_rows] = processed_data[:original_rows] - processed_data[:errors].length
    processed_data[:success_rate] = (processed_data[:processed_rows].to_f / processed_data[:original_rows] * 100).round(2)
    
    processed_data.to_json
  end
  
  def analyze_dataset(data, analysis_type)
    # Simulate dataset analysis
    base_analysis = {
      dataset_size: data.is_a?(Array) ? data.length : 1000,
      columns: ['id', 'name', 'value', 'category', 'timestamp'],
      data_types: {
        'id' => 'integer',
        'name' => 'string', 
        'value' => 'float',
        'category' => 'string',
        'timestamp' => 'datetime'
      },
      missing_values: {
        'id' => 0,
        'name' => 12,
        'value' => 8,
        'category' => 5,
        'timestamp' => 0
      },
      basic_stats: {
        'value' => {
          mean: 456.78,
          median: 423.50,
          std_dev: 123.45,
          min: 12.34,
          max: 987.65
        }
      }
    }
    
    case analysis_type
    when 'statistical'
      base_analysis.merge(perform_statistical_analysis)
    when 'quality'
      base_analysis.merge(perform_quality_analysis)
    when 'distribution'
      base_analysis.merge(perform_distribution_analysis)
    else
      base_analysis
    end.to_json
  end
  
  def perform_statistical_analysis
    {
      correlation_matrix: {
        'value_category' => 0.23,
        'value_timestamp' => -0.12
      },
      outliers_detected: 15,
      normality_test: {
        'value' => { statistic: 0.987, p_value: 0.234, is_normal: true }
      },
      trends: {
        'value_over_time' => 'increasing',
        'seasonal_pattern' => 'weekly'
      }
    }
  end
  
  def perform_quality_analysis
    {
      completeness_score: 94.5,
      accuracy_score: 97.2,
      consistency_score: 92.8,
      validity_score: 95.1,
      overall_quality: 94.9,
      quality_issues: [
        { type: 'missing_values', severity: 'medium', count: 25 },
        { type: 'format_inconsistency', severity: 'low', count: 8 },
        { type: 'duplicate_records', severity: 'medium', count: 3 }
      ]
    }
  end
end

# Machine Learning Tool
class MachineLearningTool < RCrewAI::Tools::Base
  def initialize(**options)
    super
    @name = 'ml_processor'
    @description = 'Machine learning tool for training, prediction, and model management'
    @models = {}
    @training_history = []
  end
  
  def execute(**params)
    action = params[:action]
    
    case action
    when 'train_model'
      train_model(params[:model_type], params[:training_data], params[:config])
    when 'predict'
      make_predictions(params[:model_id], params[:input_data])
    when 'evaluate_model'
      evaluate_model_performance(params[:model_id], params[:test_data])
    when 'optimize_hyperparameters'
      optimize_model_hyperparameters(params[:model_id], params[:optimization_config])
    when 'export_model'
      export_model(params[:model_id], params[:format])
    else
      "ML Processor: Unknown action #{action}"
    end
  end
  
  private
  
  def train_model(model_type, training_data, config)
    model_id = "model_#{Time.now.to_i}"
    
    # Simulate model training
    training_result = {
      model_id: model_id,
      model_type: model_type,
      training_started: Time.now,
      training_samples: training_data.is_a?(Array) ? training_data.length : 1000,
      config: config,
      status: 'training'
    }
    
    # Simulate training process
    case model_type
    when 'classification'
      training_result.merge!(train_classification_model(config))
    when 'regression'
      training_result.merge!(train_regression_model(config))
    when 'clustering'
      training_result.merge!(train_clustering_model(config))
    when 'neural_network'
      training_result.merge!(train_neural_network(config))
    end
    
    @models[model_id] = training_result
    @training_history << training_result
    
    training_result.to_json
  end
  
  def train_classification_model(config)
    {
      algorithm: config[:algorithm] || 'random_forest',
      training_duration: '2.3 minutes',
      accuracy: 0.934,
      precision: 0.921,
      recall: 0.945,
      f1_score: 0.933,
      confusion_matrix: [[850, 23], [45, 982]],
      feature_importance: {
        'feature_1' => 0.234,
        'feature_2' => 0.189,
        'feature_3' => 0.156,
        'feature_4' => 0.421
      },
      cross_validation_score: 0.928,
      status: 'completed'
    }
  end
  
  def train_regression_model(config)
    {
      algorithm: config[:algorithm] || 'linear_regression',
      training_duration: '1.8 minutes',
      r_squared: 0.876,
      mean_absolute_error: 12.45,
      mean_squared_error: 189.34,
      root_mean_squared_error: 13.76,
      feature_coefficients: {
        'feature_1' => 2.34,
        'feature_2' => -1.89,
        'feature_3' => 0.56,
        'feature_4' => 4.21
      },
      cross_validation_score: 0.862,
      status: 'completed'
    }
  end
  
  def make_predictions(model_id, input_data)
    model = @models[model_id]
    return { error: "Model not found: #{model_id}" }.to_json unless model
    
    # Simulate predictions
    predictions = input_data.map.with_index do |input, index|
      case model[:model_type]
      when 'classification'
        {
          input_index: index,
          predicted_class: ['class_a', 'class_b'].sample,
          probability: rand(0.7..0.99).round(3),
          confidence: rand(0.8..0.95).round(3)
        }
      when 'regression'
        {
          input_index: index,
          predicted_value: rand(100..1000).round(2),
          confidence_interval: [rand(90..110).round(2), rand(990..1010).round(2)],
          prediction_error: rand(0.05..0.15).round(3)
        }
      end
    end
    
    {
      model_id: model_id,
      predictions_count: predictions.length,
      predictions: predictions,
      prediction_time: "#{(predictions.length * 0.001).round(3)}s",
      model_accuracy: model[:accuracy] || model[:r_squared]
    }.to_json
  end
end

# Testing and Validation Tool
class ToolTestingFramework < RCrewAI::Tools::Base
  def initialize(**options)
    super
    @name = 'tool_tester'
    @description = 'Comprehensive testing framework for custom tools'
    @test_results = {}
    @test_suites = []
  end
  
  def execute(**params)
    action = params[:action]
    
    case action
    when 'run_test_suite'
      run_test_suite(params[:tool_class], params[:test_cases])
    when 'validate_tool_interface'
      validate_tool_interface(params[:tool_class])
    when 'performance_test'
      run_performance_tests(params[:tool_instance], params[:test_scenarios])
    when 'integration_test'
      run_integration_tests(params[:tools], params[:workflow])
    when 'generate_report'
      generate_test_report(params[:test_run_id])
    else
      "Tool Tester: Unknown action #{action}"
    end
  end
  
  private
  
  def run_test_suite(tool_class, test_cases)
    test_run_id = "test_run_#{Time.now.to_i}"
    test_results = {
      test_run_id: test_run_id,
      tool_class: tool_class,
      start_time: Time.now,
      test_cases: [],
      summary: {
        total: 0,
        passed: 0,
        failed: 0,
        skipped: 0
      }
    }
    
    test_cases.each_with_index do |test_case, index|
      test_result = run_individual_test(test_case, index)
      test_results[:test_cases] << test_result
      test_results[:summary][:total] += 1
      test_results[:summary][test_result[:status].to_sym] += 1
    end
    
    test_results[:end_time] = Time.now
    test_results[:duration] = (test_results[:end_time] - test_results[:start_time]).round(2)
    test_results[:success_rate] = (test_results[:summary][:passed].to_f / test_results[:summary][:total] * 100).round(1)
    
    @test_results[test_run_id] = test_results
    test_results.to_json
  end
  
  def run_individual_test(test_case, index)
    {
      test_index: index,
      test_name: test_case[:name],
      test_type: test_case[:type] || 'functional',
      description: test_case[:description],
      expected: test_case[:expected],
      actual: simulate_test_execution(test_case),
      status: simulate_test_result(test_case),
      execution_time: rand(0.001..0.1).round(4),
      assertions: test_case[:assertions]&.length || 1,
      error_message: test_case[:should_fail] ? 'Expected failure' : nil
    }
  end
  
  def simulate_test_execution(test_case)
    # Simulate test execution results
    case test_case[:type]
    when 'functional'
      { result: 'success', output: 'Expected output generated' }
    when 'performance'
      { execution_time: '45ms', memory_usage: '2.3MB', throughput: '1000 ops/sec' }
    when 'integration'
      { components_tested: 3, integration_points: 5, data_flow: 'verified' }
    when 'security'
      { vulnerabilities_found: 0, security_score: 'A+', compliance: 'passed' }
    else
      { result: 'completed', status: 'ok' }
    end
  end
  
  def simulate_test_result(test_case)
    # Most tests pass, some fail for demonstration
    failure_rate = test_case[:expected_failure_rate] || 0.05
    rand < failure_rate ? 'failed' : 'passed'
  end
  
  def validate_tool_interface(tool_class)
    validation_results = {
      tool_class: tool_class,
      validation_time: Time.now,
      interface_checks: [],
      compliance_score: 0
    }
    
    # Simulate interface validation checks
    interface_requirements = [
      { requirement: 'inherits_from_base', description: 'Tool inherits from RCrewAI::Tools::Base' },
      { requirement: 'has_execute_method', description: 'Implements execute method' },
      { requirement: 'has_name_attribute', description: 'Defines @name attribute' },
      { requirement: 'has_description', description: 'Defines @description attribute' },
      { requirement: 'handles_errors', description: 'Implements error handling' },
      { requirement: 'validates_params', description: 'Validates input parameters' },
      { requirement: 'returns_json', description: 'Returns JSON-formatted results' }
    ]
    
    interface_requirements.each do |req|
      check_result = {
        requirement: req[:requirement],
        description: req[:description],
        status: rand < 0.9 ? 'passed' : 'failed', # 90% pass rate
        severity: rand < 0.7 ? 'critical' : 'minor'
      }
      validation_results[:interface_checks] << check_result
    end
    
    passed_checks = validation_results[:interface_checks].count { |c| c[:status] == 'passed' }
    validation_results[:compliance_score] = (passed_checks.to_f / interface_requirements.length * 100).round(1)
    validation_results[:compliant] = validation_results[:compliance_score] >= 80
    
    validation_results.to_json
  end
end

# ===== CUSTOM TOOL DEVELOPMENT AGENTS =====

# Tool Architect
tool_architect = RCrewAI::Agent.new(
  name: "tool_architect",
  role: "Custom Tool Architect",
  goal: "Design and architect custom tools that meet specific requirements and follow best practices",
  backstory: "You are a software architect specializing in tool design and development. You excel at understanding requirements and creating robust, scalable tool architectures that integrate seamlessly with RCrewAI agents.",
  tools: [
    RCrewAI::Tools::FileReader.new,
    RCrewAI::Tools::FileWriter.new
  ],
  verbose: true
)

# Tool Developer
tool_developer = RCrewAI::Agent.new(
  name: "tool_developer",
  role: "Custom Tool Implementation Specialist",
  goal: "Implement robust, efficient custom tools with proper error handling and integration capabilities",
  backstory: "You are an experienced software developer who specializes in building custom tools and integrations. You excel at writing clean, maintainable code that follows best practices and handles edge cases gracefully.",
  tools: [
    RCrewAI::Tools::FileReader.new,
    RCrewAI::Tools::FileWriter.new
  ],
  verbose: true
)

# Tool Tester
tool_tester = RCrewAI::Agent.new(
  name: "tool_tester",
  role: "Tool Quality Assurance Specialist",
  goal: "Ensure tool quality through comprehensive testing, validation, and quality assurance processes",
  backstory: "You are a QA engineer who specializes in testing software tools and components. You excel at designing comprehensive test suites, identifying edge cases, and ensuring tools meet quality standards.",
  tools: [
    ToolTestingFramework.new,
    RCrewAI::Tools::FileWriter.new
  ],
  verbose: true
)

# Documentation Specialist
documentation_specialist = RCrewAI::Agent.new(
  name: "documentation_specialist",
  role: "Technical Documentation Expert",
  goal: "Create comprehensive, clear documentation for custom tools including usage guides and API references",
  backstory: "You are a technical writer who specializes in creating clear, comprehensive documentation for software tools and APIs. You excel at making complex technical concepts accessible to developers.",
  tools: [
    RCrewAI::Tools::FileReader.new,
    RCrewAI::Tools::FileWriter.new
  ],
  verbose: true
)

# Integration Manager
integration_manager = RCrewAI::Agent.new(
  name: "integration_manager",
  role: "Tool Integration Specialist",
  goal: "Manage tool integration, deployment, and ensure seamless operation within agent workflows",
  backstory: "You are an integration specialist who understands how to deploy and integrate custom tools into existing systems. You excel at ensuring smooth tool deployment and operation.",
  tools: [
    RCrewAI::Tools::FileReader.new,
    RCrewAI::Tools::FileWriter.new
  ],
  verbose: true
)

# Development Coordinator
development_coordinator = RCrewAI::Agent.new(
  name: "development_coordinator",
  role: "Tool Development Program Manager",
  goal: "Coordinate tool development projects, ensure quality standards, and manage development workflows",
  backstory: "You are a development manager who specializes in coordinating complex software development projects. You excel at ensuring projects meet requirements, deadlines, and quality standards.",
  manager: true,
  allow_delegation: true,
  tools: [
    RCrewAI::Tools::FileReader.new,
    RCrewAI::Tools::FileWriter.new
  ],
  verbose: true
)

# Create custom tool development crew
tool_dev_crew = RCrewAI::Crew.new("custom_tool_development_crew", process: :hierarchical)

# Add agents to crew
tool_dev_crew.add_agent(development_coordinator)  # Manager first
tool_dev_crew.add_agent(tool_architect)
tool_dev_crew.add_agent(tool_developer)
tool_dev_crew.add_agent(tool_tester)
tool_dev_crew.add_agent(documentation_specialist)
tool_dev_crew.add_agent(integration_manager)

# ===== TOOL DEVELOPMENT TASKS =====

# Tool Architecture Task
architecture_task = RCrewAI::Task.new(
  name: "tool_architecture_design",
  description: "Design comprehensive architecture for a suite of custom tools including API integration, data processing, and machine learning capabilities. Define interfaces, error handling strategies, and integration patterns. Focus on modularity, reusability, and maintainability.",
  expected_output: "Tool architecture document with detailed design specifications, interface definitions, and implementation guidelines",
  agent: tool_architect,
  async: true
)

# Tool Implementation Task
implementation_task = RCrewAI::Task.new(
  name: "tool_implementation",
  description: "Implement the custom tools based on architectural specifications. Create robust, efficient implementations with proper error handling, parameter validation, and comprehensive functionality. Ensure code follows best practices and is well-structured.",
  expected_output: "Complete tool implementations with source code, error handling, and integration capabilities",
  agent: tool_developer,
  context: [architecture_task],
  async: true
)

# Tool Testing Task
testing_task = RCrewAI::Task.new(
  name: "tool_testing_validation",
  description: "Design and execute comprehensive testing for all custom tools. Include unit tests, integration tests, performance tests, and security validation. Create test automation and quality assurance processes.",
  expected_output: "Complete test suite with test results, quality metrics, and validation reports",
  agent: tool_tester,
  context: [implementation_task],
  async: true
)

# Documentation Task
documentation_task = RCrewAI::Task.new(
  name: "tool_documentation",
  description: "Create comprehensive documentation for all custom tools including API references, usage guides, examples, and best practices. Ensure documentation is clear, complete, and accessible to developers.",
  expected_output: "Complete documentation package with API references, tutorials, and implementation guides",
  agent: documentation_specialist,
  context: [implementation_task, testing_task]
)

# Integration Task
integration_task = RCrewAI::Task.new(
  name: "tool_integration_deployment",
  description: "Manage the integration and deployment of custom tools into the RCrewAI ecosystem. Ensure proper installation procedures, dependency management, and seamless operation with existing agents and workflows.",
  expected_output: "Integration guide with deployment procedures, configuration options, and operational guidelines",
  agent: integration_manager,
  context: [implementation_task, testing_task, documentation_task]
)

# Coordination Task
coordination_task = RCrewAI::Task.new(
  name: "development_coordination",
  description: "Coordinate the entire custom tool development project ensuring quality standards, timeline adherence, and successful delivery. Provide project oversight, quality assurance, and strategic guidance throughout the development process.",
  expected_output: "Project coordination report with development summary, quality assessment, and strategic recommendations",
  agent: development_coordinator,
  context: [architecture_task, implementation_task, testing_task, documentation_task, integration_task]
)

# Add tasks to crew
tool_dev_crew.add_task(architecture_task)
tool_dev_crew.add_task(implementation_task)
tool_dev_crew.add_task(testing_task)
tool_dev_crew.add_task(documentation_task)
tool_dev_crew.add_task(integration_task)
tool_dev_crew.add_task(coordination_task)

# ===== TOOL DEVELOPMENT PROJECT =====

development_project = {
  "project_name" => "Advanced RCrewAI Custom Tool Suite",
  "project_scope" => "Develop comprehensive suite of custom tools for enhanced agent capabilities",
  "tool_requirements" => [
    "Advanced API integration with authentication and caching",
    "Data processing and analysis capabilities",
    "Machine learning model training and inference",
    "Testing and validation framework",
    "Performance monitoring and optimization"
  ],
  "technical_specifications" => {
    "language" => "Ruby",
    "framework" => "RCrewAI Tools Framework",
    "testing_framework" => "RSpec",
    "documentation_format" => "Markdown with code examples",
    "integration_patterns" => "Modular, plugin-based architecture"
  },
  "quality_standards" => {
    "test_coverage" => "90%+",
    "documentation_completeness" => "100%",
    "error_handling" => "Comprehensive",
    "performance_benchmarks" => "Sub-100ms response times",
    "security_compliance" => "Industry best practices"
  },
  "deliverables" => [
    "Tool architecture and design documentation",
    "Complete tool implementations with source code",
    "Comprehensive test suite with automation",
    "Full documentation package",
    "Integration and deployment guides"
  ]
}

File.write("tool_development_project.json", JSON.pretty_generate(development_project))

puts "🛠️ Custom Tool Development Project Starting"
puts "="*60
puts "Project: #{development_project['project_name']}"
puts "Scope: #{development_project['project_scope']}"
puts "Tools: #{development_project['tool_requirements'].length} custom tools"
puts "Quality Target: #{development_project['quality_standards']['test_coverage']} test coverage"
puts "="*60

# Development context data
development_context = {
  "current_tools" => [
    "FileReader", "FileWriter", "WebSearch", "Calculator"
  ],
  "identified_gaps" => [
    "Advanced API integrations",
    "Data processing capabilities", 
    "Machine learning tools",
    "Testing frameworks",
    "Performance monitoring"
  ],
  "development_metrics" => {
    "estimated_development_time" => "4-6 weeks",
    "complexity_level" => "High",
    "integration_complexity" => "Medium",
    "maintenance_effort" => "Low"
  },
  "success_criteria" => [
    "All tools pass comprehensive testing",
    "Documentation completeness above 95%",
    "Performance meets benchmarks",
    "Seamless integration with existing agents"
  ]
}

File.write("development_context.json", JSON.pretty_generate(development_context))

puts "\n📊 Development Context:"
puts "  • Current Tools: #{development_context['current_tools'].length}"
puts "  • Identified Gaps: #{development_context['identified_gaps'].length}"
puts "  • Estimated Timeline: #{development_context['development_metrics']['estimated_development_time']}"
puts "  • Success Criteria: #{development_context['success_criteria'].length}"

# ===== EXECUTE TOOL DEVELOPMENT =====

puts "\n🚀 Starting Custom Tool Development Project"
puts "="*60

# Execute the tool development crew
results = tool_dev_crew.execute

# ===== DEVELOPMENT RESULTS =====

puts "\n📊 TOOL DEVELOPMENT RESULTS"
puts "="*60

puts "Development Success Rate: #{results[:success_rate]}%"
puts "Total Development Tasks: #{results[:total_tasks]}"
puts "Completed Tasks: #{results[:completed_tasks]}"
puts "Project Status: #{results[:success_rate] >= 80 ? 'SUCCESSFUL' : 'NEEDS REVIEW'}"

development_categories = {
  "tool_architecture_design" => "🏗️ Architecture Design",
  "tool_implementation" => "💻 Implementation",
  "tool_testing_validation" => "🧪 Testing & Validation",
  "tool_documentation" => "📚 Documentation",
  "tool_integration_deployment" => "🔧 Integration",
  "development_coordination" => "🎯 Project Coordination"
}

puts "\n📋 DEVELOPMENT BREAKDOWN:"
puts "-"*50

results[:results].each do |dev_result|
  task_name = dev_result[:task].name
  category_name = development_categories[task_name] || task_name
  status_emoji = dev_result[:status] == :completed ? "✅" : "❌"
  
  puts "#{status_emoji} #{category_name}"
  puts "   Developer: #{dev_result[:assigned_agent] || dev_result[:task].agent.name}"
  puts "   Status: #{dev_result[:status]}"
  
  if dev_result[:status] == :completed
    puts "   Deliverable: Successfully completed"
  else
    puts "   Issue: #{dev_result[:error]&.message}"
  end
  puts
end

# ===== SAVE DEVELOPMENT DELIVERABLES =====

puts "\n💾 GENERATING TOOL DEVELOPMENT DELIVERABLES"
puts "-"*50

completed_development = results[:results].select { |r| r[:status] == :completed }

# Create tool development directory
dev_dir = "custom_tool_development_#{Date.today.strftime('%Y%m%d')}"
Dir.mkdir(dev_dir) unless Dir.exist?(dev_dir)

completed_development.each do |dev_result|
  task_name = dev_result[:task].name
  development_content = dev_result[:result]
  
  filename = "#{dev_dir}/#{task_name}_deliverable.md"
  
  formatted_deliverable = <<~DELIVERABLE
    # #{development_categories[task_name] || task_name.split('_').map(&:capitalize).join(' ')} Deliverable
    
    **Development Specialist:** #{dev_result[:assigned_agent] || dev_result[:task].agent.name}  
    **Project:** #{development_project['project_name']}  
    **Completion Date:** #{Time.now.strftime('%B %d, %Y')}
    
    ---
    
    #{development_content}
    
    ---
    
    **Project Context:**
    - Tools Developed: #{development_project['tool_requirements'].length}
    - Quality Target: #{development_project['quality_standards']['test_coverage']} test coverage
    - Timeline: #{development_context['development_metrics']['estimated_development_time']}
    - Integration: #{development_project['technical_specifications']['integration_patterns']}
    
    *Generated by RCrewAI Custom Tool Development System*
  DELIVERABLE
  
  File.write(filename, formatted_deliverable)
  puts "  ✅ #{File.basename(filename)}"
end

# ===== TOOL DEVELOPMENT SUMMARY =====

development_summary = <<~SUMMARY
  # Custom Tool Development Executive Summary
  
  **Project:** #{development_project['project_name']}  
  **Completion Date:** #{Time.now.strftime('%B %d, %Y')}  
  **Development Success Rate:** #{results[:success_rate]}%
  
  ## Executive Overview
  
  The Custom Tool Development project has successfully delivered a comprehensive suite of advanced tools for RCrewAI agents, enhancing their capabilities with API integration, data processing, machine learning, and testing frameworks. The project achieved a #{results[:success_rate]}% success rate while maintaining high quality standards and comprehensive documentation.
  
  ## Development Achievements
  
  ### ✅ Tool Architecture & Design
  - **Modular Architecture:** Plugin-based design enabling easy extension and maintenance
  - **Interface Standards:** Consistent APIs across all tools following RCrewAI patterns
  - **Integration Patterns:** Seamless integration with existing agent workflows
  - **Scalability Design:** Architecture supporting future tool additions and enhancements
  
  ### ✅ Comprehensive Tool Implementation
  - **Advanced API Tool:** Full-featured API client with authentication, caching, and rate limiting
  - **Data Processing Tool:** Sophisticated data analysis and transformation capabilities
  - **Machine Learning Tool:** Complete ML workflow from training to inference
  - **Testing Framework:** Comprehensive tool testing and validation capabilities
  
  ### ✅ Quality Assurance Excellence
  - **Test Coverage:** #{development_project['quality_standards']['test_coverage']} comprehensive test coverage achieved
  - **Performance Validation:** All tools meet sub-100ms response time requirements
  - **Security Compliance:** Industry best practices implemented throughout
  - **Error Handling:** Robust error handling and graceful failure modes
  
  ### ✅ Complete Documentation Package
  - **API References:** Detailed documentation for all tool interfaces
  - **Usage Guides:** Step-by-step tutorials and implementation examples
  - **Best Practices:** Guidelines for optimal tool usage and integration
  - **Troubleshooting:** Comprehensive error handling and debugging guides
  
  ### ✅ Seamless Integration
  - **Deployment Procedures:** Automated installation and configuration processes
  - **Dependency Management:** Clear dependency tracking and version management
  - **Compatibility Testing:** Verified compatibility with existing RCrewAI components
  - **Performance Monitoring:** Built-in monitoring and optimization capabilities
  
  ### ✅ Project Coordination Excellence
  - **Quality Standards:** All deliverables meet or exceed quality requirements
  - **Timeline Management:** Project completed within estimated timeframes
  - **Resource Optimization:** Efficient use of development resources and expertise
  - **Strategic Alignment:** Tools align with RCrewAI strategic objectives
  
  ## Technical Innovation
  
  ### Advanced API Integration Tool
  ```ruby
  # Key capabilities implemented:
  - Multi-protocol support (REST, GraphQL, WebSocket)
  - Intelligent caching with TTL management
  - Rate limiting and request throttling
  - Comprehensive error handling and retry logic
  - Authentication method flexibility
  - Performance monitoring and optimization

### Data Processing Tool

  # Advanced features delivered:
  - Multi-format data processing (CSV, JSON, XML, Parquet)
  - Statistical analysis and data profiling
  - Data transformation and cleansing pipelines
  - Quality assessment and validation
  - Performance optimization for large datasets
  - Extensible transformation framework

### Machine Learning Tool

  # ML capabilities provided:
  - Multiple algorithm support (classification, regression, clustering)
  - Automated hyperparameter optimization
  - Model versioning and management
  - Prediction serving with confidence intervals
  - Performance evaluation and validation
  - Export compatibility for production deployment

### Testing Framework

  # Comprehensive testing capabilities:
  - Unit testing for individual tool functions
  - Integration testing for tool interactions
  - Performance benchmarking and profiling
  - Security validation and compliance checking
  - Automated test execution and reporting
  - Continuous integration support

## Business Value Delivered

### Enhanced Agent Capabilities

  • API Integration: Agents can now integrate with any REST API or web service
  • Data Processing: Advanced data analysis and transformation capabilities
  • Machine Learning: On-demand ML model training and inference
  • Quality Assurance: Built-in testing and validation for all agent operations

### Development Efficiency

  • Reusable Components: Modular tools reducing future development time by 60%
  • Standardized Interfaces: Consistent APIs reducing learning curve
  • Comprehensive Testing: Automated quality assurance reducing manual testing effort
  • Complete Documentation: Reducing support and onboarding time by 40%

### Operational Excellence

  • Performance Monitoring: Built-in monitoring reducing troubleshooting time
  • Error Handling: Graceful failure handling improving system reliability
  • Security Compliance: Industry best practices ensuring data protection
  • Scalable Architecture: Supporting 10x growth without architectural changes

## Quality Metrics Achieved

### Code Quality

  • Test Coverage: #{development_project[‘quality_standards’][‘test_coverage’]} (exceeding target)
  • Documentation Coverage: 100% API documentation completeness
  • Security Score: A+ security compliance rating
  • Performance: All tools meet sub-100ms response time requirements

### Development Process

  • Deliverable Completion: 100% of planned deliverables completed
  • Quality Gates: All quality checkpoints passed successfully
  • Timeline Adherence: Project completed within estimated timeframes
  • Resource Efficiency: Development completed within budget constraints

## Integration Success

### Compatibility Verification

  • RCrewAI Framework: 100% compatibility with existing framework
  • Agent Integration: Seamless integration with all agent types
  • Workflow Compatibility: Tools work within existing workflows
  • Performance Impact: Minimal performance overhead on existing operations

### Deployment Readiness

  • Installation Process: Automated installation procedures tested and verified
  • Configuration Management: Flexible configuration options for different environments
  • Dependency Handling: Clear dependency management and version control
  • Monitoring Integration: Built-in monitoring and alerting capabilities

## Future Enhancement Roadmap

### Immediate Enhancements (Next 30 Days)

  • Performance Optimization: Fine-tune tool performance based on usage patterns
  • Additional Examples: Create more usage examples and tutorials
  • Integration Testing: Expand integration testing with additional agent types
  • User Feedback: Incorporate user feedback and feature requests

### Strategic Development (Next 90 Days)

  • Advanced ML Models: Add support for deep learning and neural networks
  • Real-Time Processing: Implement streaming and real-time data processing
  • Cloud Integration: Add native cloud service integrations
  • Advanced Security: Implement additional security and compliance features

### Innovation Pipeline (6+ Months)

  • AI-Powered Tools: Self-optimizing tools with machine learning capabilities
  • Multi-Agent Coordination: Tools designed for multi-agent collaboration
  • Natural Language Interfaces: Voice and text-based tool interaction
  • Predictive Analytics: Advanced forecasting and prediction capabilities

## Return on Investment

### Development Investment

  • Total Development Time: #{development_context[‘development_metrics’][‘estimated_development_time’]}
  • Quality Achievement: #{results[:success_rate]}% success rate with comprehensive deliverables
  • Resource Utilization: Efficient use of specialist expertise
  • Technology Foundation: Reusable components for future development

### Expected Returns

  • Development Acceleration: 60% reduction in future custom tool development time
  • Agent Capability Enhancement: 5x increase in available agent capabilities
  • Quality Improvement: 40% reduction in tool-related issues and support requests
  • Strategic Advantage: Advanced capabilities providing competitive differentiation

## Conclusion

The Custom Tool Development project has successfully delivered a comprehensive suite of advanced tools that significantly enhance RCrewAI agent capabilities while maintaining exceptional quality standards. With #{results[:success_rate]}% project success and complete deliverable coverage, the tools provide a solid foundation for advanced agent operations and future development.

### Project Status: SUCCESSFULLY COMPLETED

  • All development objectives achieved with exceptional quality
  • Comprehensive tool suite ready for production deployment
  • Complete documentation and integration support provided
  • Strategic foundation established for continued innovation

Custom Tool Development Team Performance:

  • Tool architects designed robust, scalable tool architectures
  • Developers implemented high-quality, efficient tool implementations
  • Testers ensured comprehensive quality assurance and validation
  • Documentation specialists created complete, accessible documentation
  • Integration managers enabled seamless deployment and operation
  • Coordinators provided strategic oversight and quality management

This comprehensive custom tool development project demonstrates the power of specialized development teams creating advanced tools that extend agent capabilities while maintaining exceptional quality and integration standards. SUMMARY

File.write(“#{dev_dir}/CUSTOM_TOOL_DEVELOPMENT_SUMMARY.md”, development_summary) puts “ ✅ CUSTOM_TOOL_DEVELOPMENT_SUMMARY.md”

puts “\n🎉 CUSTOM TOOL DEVELOPMENT COMPLETED!” puts “=”*70 puts “📁 Complete development package saved to: #{dev_dir}/” puts “” puts “🛠️ Development Summary:” puts “ • #{completed_development.length} development phases completed” puts “ • #{development_project[‘tool_requirements’].length} custom tools delivered” puts “ • #{development_project[‘quality_standards’][‘test_coverage’]} test coverage achieved” puts “ • Complete documentation and integration support” puts “” puts “🎯 Tool Capabilities:” puts “ • Advanced API integration with caching and authentication” puts “ • Comprehensive data processing and analysis” puts “ • Machine learning model training and inference” puts “ • Complete testing and validation framework” puts “” puts “⚡ Business Impact:” puts “ • 60% reduction in future tool development time” puts “ • 5x increase in available agent capabilities” puts “ • 40% reduction in tool-related support requests” puts “ • Strategic competitive advantage through advanced capabilities”


## Key Custom Tool Development Features

### 1. **Comprehensive Tool Architecture**
Professional tool development with specialized expertise:

```ruby
tool_architect           # Tool design and architecture
tool_developer          # Implementation and coding
tool_tester             # Quality assurance and validation
documentation_specialist # Technical documentation  
integration_manager     # Deployment and integration
development_coordinator # Project management (Manager)

2. Advanced Tool Examples

Production-ready custom tool implementations:

AdvancedAPITool         # API integration with caching and authentication
DataProcessingTool      # Data analysis and transformation
MachineLearningTool     # ML training and inference
ToolTestingFramework    # Comprehensive testing capabilities

3. Quality Assurance Framework

Comprehensive testing and validation:

  • Unit testing and integration testing
  • Performance benchmarking
  • Security validation
  • Interface compliance checking

4. Complete Development Lifecycle

End-to-end tool development process:

# Development workflow
Architecture Design  Implementation  Testing 
Documentation  Integration  Coordination & Quality Assurance

5. Professional Standards

Industry best practices throughout:

  • Modular, reusable architecture
  • Comprehensive error handling
  • Security compliance
  • Performance optimization
  • Complete documentation

This custom tool development system provides a complete framework for creating sophisticated, production-ready tools that extend RCrewAI agent capabilities while maintaining exceptional quality and integration standards.