Database Operations

Data processing and analysis with database connectivity, automated queries, and intelligent data management

Database Operations

This example demonstrates a comprehensive database operations system using RCrewAI agents to handle database connectivity, automated queries, data analysis, and intelligent data management across multiple database systems and data sources.

Overview

Our database operations team includes:

  • Database Administrator - Database management, optimization, and maintenance
  • Data Analyst - Query optimization and data analysis
  • ETL Specialist - Extract, Transform, Load operations
  • Performance Optimizer - Database performance tuning and monitoring
  • Data Quality Manager - Data integrity and validation
  • Operations Coordinator - Strategic database operations management

Complete Implementation

require 'rcrewai'
require 'json'
require 'csv'

# Configure RCrewAI for database operations
RCrewAI.configure do |config|
  config.llm_provider = :openai
  config.temperature = 0.2  # Low temperature for precise database operations
end

# ===== DATABASE OPERATIONS TOOLS =====

# Database Connection Tool
class DatabaseConnectionTool < RCrewAI::Tools::Base
  def initialize(**options)
    super
    @name = 'database_connector'
    @description = 'Connect to various database systems and execute operations'
    @connections = {}
    @connection_pool = {}
  end
  
  def execute(**params)
    action = params[:action]
    
    case action
    when 'connect_database'
      connect_to_database(params[:db_config], params[:connection_name])
    when 'execute_query'
      execute_database_query(params[:connection], params[:query], params[:parameters])
    when 'bulk_insert'
      perform_bulk_insert(params[:connection], params[:table], params[:data])
    when 'create_table'
      create_database_table(params[:connection], params[:table_schema])
    when 'backup_database'
      create_database_backup(params[:connection], params[:backup_options])
    when 'monitor_performance'
      monitor_database_performance(params[:connection])
    else
      "Database connector: Unknown action #{action}"
    end
  end
  
  private
  
  def connect_to_database(db_config, connection_name)
    # Simulate database connection
    connection_info = {
      connection_name: connection_name,
      database_type: db_config[:type] || 'postgresql',
      host: db_config[:host] || 'localhost',
      port: db_config[:port] || 5432,
      database: db_config[:database] || 'production_db',
      status: 'connected',
      connection_time: Time.now,
      connection_id: "conn_#{rand(1000..9999)}",
      pool_size: db_config[:pool_size] || 10,
      timeout: db_config[:timeout] || 30
    }
    
    @connections[connection_name] = connection_info
    
    {
      status: 'success',
      message: "Connected to #{db_config[:type]} database",
      connection_details: connection_info,
      available_operations: [
        'execute_query', 'bulk_insert', 'create_table', 
        'backup_database', 'monitor_performance'
      ]
    }.to_json
  end
  
  def execute_database_query(connection_name, query, parameters = {})
    connection = @connections[connection_name]
    return { error: "Connection not found: #{connection_name}" }.to_json unless connection
    
    # Simulate query execution with different query types
    query_type = detect_query_type(query)
    
    case query_type
    when 'SELECT'
      execute_select_query(query, parameters)
    when 'INSERT'
      execute_insert_query(query, parameters)
    when 'UPDATE'
      execute_update_query(query, parameters)
    when 'DELETE'
      execute_delete_query(query, parameters)
    else
      execute_generic_query(query, parameters)
    end
  end
  
  def execute_select_query(query, parameters)
    # Simulate SELECT query results
    {
      query_type: 'SELECT',
      execution_time: '45ms',
      rows_returned: 1247,
      columns: ['id', 'name', 'email', 'created_at', 'status'],
      sample_data: [
        { id: 1, name: 'John Doe', email: 'john@example.com', created_at: '2024-01-15T10:30:00Z', status: 'active' },
        { id: 2, name: 'Jane Smith', email: 'jane@example.com', created_at: '2024-01-14T15:22:00Z', status: 'active' },
        { id: 3, name: 'Bob Johnson', email: 'bob@example.com', created_at: '2024-01-13T09:15:00Z', status: 'inactive' }
      ],
      query_plan: {
        operation: 'Index Scan',
        cost: '1.23..45.67',
        rows_estimated: 1200,
        width: 64
      },
      performance_stats: {
        buffer_hits: 156,
        buffer_reads: 12,
        cache_hit_ratio: 92.3
      }
    }.to_json
  end
  
  def execute_insert_query(query, parameters)
    # Simulate INSERT query results
    {
      query_type: 'INSERT',
      execution_time: '12ms',
      rows_affected: parameters[:batch_size] || 1,
      inserted_ids: [1001, 1002, 1003],
      constraints_checked: ['primary_key', 'foreign_key', 'not_null'],
      transaction_status: 'committed',
      auto_vacuum_triggered: false
    }.to_json
  end
  
  def perform_bulk_insert(connection_name, table, data)
    connection = @connections[connection_name]
    return { error: "Connection not found: #{connection_name}" }.to_json unless connection
    
    # Simulate bulk insert operation
    batch_size = 1000
    total_rows = data.is_a?(Array) ? data.length : 5000
    batches = (total_rows.to_f / batch_size).ceil
    
    {
      operation: 'bulk_insert',
      table: table,
      total_rows: total_rows,
      batch_size: batch_size,
      total_batches: batches,
      execution_time: "#{batches * 0.5}s",
      rows_inserted: total_rows,
      rows_failed: 0,
      success_rate: 100.0,
      performance_metrics: {
        rows_per_second: (total_rows / (batches * 0.5)).round(0),
        memory_usage: '45MB',
        cpu_usage: '12%',
        disk_io: '234MB'
      },
      optimization_suggestions: [
        'Consider partitioning for tables > 1M rows',
        'Use COPY for faster bulk inserts',
        'Disable triggers during bulk operations'
      ]
    }.to_json
  end
  
  def monitor_database_performance(connection_name)
    connection = @connections[connection_name]
    return { error: "Connection not found: #{connection_name}" }.to_json unless connection
    
    # Simulate performance monitoring
    {
      connection: connection_name,
      monitoring_timestamp: Time.now,
      performance_metrics: {
        cpu_usage: '23%',
        memory_usage: '67%',
        disk_usage: '45%',
        active_connections: 23,
        max_connections: 100,
        queries_per_second: 156,
        average_query_time: '45ms',
        slow_queries: 3,
        cache_hit_ratio: 94.5
      },
      database_stats: {
        total_size: '2.3GB',
        largest_table: 'transactions (450MB)',
        index_usage: '89%',
        fragmentation_level: '8%',
        last_vacuum: '2024-01-15T02:00:00Z',
        last_analyze: '2024-01-15T02:15:00Z'
      },
      alerts: [
        { level: 'warning', message: 'Memory usage approaching 70% threshold' },
        { level: 'info', message: '3 slow queries detected in last hour' }
      ],
      recommendations: [
        'Consider adding index on frequently queried columns',
        'Schedule VACUUM ANALYZE during low-usage periods',
        'Monitor memory usage trend - may need tuning'
      ]
    }.to_json
  end
  
  def detect_query_type(query)
    query_upper = query.strip.upcase
    case query_upper
    when /^SELECT/
      'SELECT'
    when /^INSERT/
      'INSERT'
    when /^UPDATE/
      'UPDATE'
    when /^DELETE/
      'DELETE'
    when /^CREATE/
      'CREATE'
    when /^ALTER/
      'ALTER'
    when /^DROP/
      'DROP'
    else
      'OTHER'
    end
  end
end

# ETL Processing Tool
class ETLProcessingTool < RCrewAI::Tools::Base
  def initialize(**options)
    super
    @name = 'etl_processor'
    @description = 'Extract, Transform, and Load data between systems'
  end
  
  def execute(**params)
    action = params[:action]
    
    case action
    when 'extract_data'
      extract_data_from_source(params[:source], params[:extraction_config])
    when 'transform_data'
      transform_data(params[:data], params[:transformation_rules])
    when 'load_data'
      load_data_to_target(params[:target], params[:data], params[:load_config])
    when 'run_etl_pipeline'
      run_complete_etl_pipeline(params[:pipeline_config])
    when 'validate_data_quality'
      validate_data_quality(params[:data], params[:quality_rules])
    else
      "ETL processor: Unknown action #{action}"
    end
  end
  
  private
  
  def extract_data_from_source(source, config)
    # Simulate data extraction
    {
      source_type: source[:type] || 'database',
      source_name: source[:name],
      extraction_method: config[:method] || 'full',
      records_extracted: 15_000,
      extraction_time: '2.3 minutes',
      data_size: '45MB',
      extraction_timestamp: Time.now,
      data_quality: {
        completeness: 96.5,
        accuracy: 94.2,
        consistency: 98.1
      },
      sample_records: [
        { customer_id: 12345, name: 'Acme Corp', revenue: 250_000, industry: 'Technology' },
        { customer_id: 12346, name: 'Global Solutions', revenue: 180_000, industry: 'Consulting' }
      ],
      metadata: {
        schema_version: '1.2.1',
        extraction_filters: config[:filters] || 'none',
        incremental_key: config[:incremental_key] || 'updated_at'
      }
    }.to_json
  end
  
  def transform_data(data, transformation_rules)
    # Simulate data transformation
    applied_transformations = []
    
    transformation_rules.each do |rule|
      case rule[:type]
      when 'cleanse'
        applied_transformations << {
          type: 'data_cleansing',
          operation: rule[:operation],
          records_affected: rand(1000..5000),
          improvement: '15% data quality increase'
        }
      when 'normalize'
        applied_transformations << {
          type: 'normalization',
          operation: rule[:operation],
          records_affected: rand(5000..15000),
          improvement: 'Standardized format applied'
        }
      when 'aggregate'
        applied_transformations << {
          type: 'aggregation',
          operation: rule[:operation],
          records_created: rand(100..1000),
          improvement: 'Summary tables generated'
        }
      end
    end
    
    {
      transformation_summary: {
        input_records: 15_000,
        output_records: 14_750,
        transformation_time: '1.8 minutes',
        success_rate: 98.3,
        transformations_applied: applied_transformations.length
      },
      applied_transformations: applied_transformations,
      data_quality_impact: {
        completeness: '+2.5%',
        accuracy: '+8.7%',
        consistency: '+1.2%'
      },
      performance_metrics: {
        memory_usage: '128MB',
        cpu_usage: '45%',
        processing_rate: '8,200 records/minute'
      }
    }.to_json
  end
  
  def run_complete_etl_pipeline(pipeline_config)
    # Simulate complete ETL pipeline execution
    pipeline_stages = [
      { stage: 'extract', duration: '2.3 minutes', status: 'completed', records: 15_000 },
      { stage: 'transform', duration: '1.8 minutes', status: 'completed', records: 14_750 },
      { stage: 'load', duration: '1.2 minutes', status: 'completed', records: 14_750 },
      { stage: 'validate', duration: '0.5 minutes', status: 'completed', records: 14_750 }
    ]
    
    {
      pipeline_name: pipeline_config[:name] || 'customer_data_pipeline',
      execution_id: "etl_#{Time.now.to_i}",
      start_time: Time.now - 360, # 6 minutes ago
      end_time: Time.now,
      total_duration: '6.8 minutes',
      overall_status: 'success',
      pipeline_stages: pipeline_stages,
      final_metrics: {
        input_records: 15_000,
        output_records: 14_750,
        success_rate: 98.3,
        data_quality_score: 96.8
      },
      resource_utilization: {
        peak_memory: '256MB',
        average_cpu: '35%',
        disk_io: '180MB',
        network_transfer: '45MB'
      },
      data_lineage: {
        source_systems: ['CRM_DB', 'Sales_API', 'Marketing_CSV'],
        target_systems: ['Data_Warehouse', 'Analytics_DB'],
        transformation_count: 12,
        quality_checks: 8
      }
    }.to_json
  end
end

# Data Quality Tool
class DataQualityTool < RCrewAI::Tools::Base
  def initialize(**options)
    super
    @name = 'data_quality_manager'
    @description = 'Monitor and manage data quality across database systems'
  end
  
  def execute(**params)
    action = params[:action]
    
    case action
    when 'assess_quality'
      assess_data_quality(params[:dataset], params[:quality_dimensions])
    when 'detect_anomalies'
      detect_data_anomalies(params[:data], params[:detection_rules])
    when 'generate_profile'
      generate_data_profile(params[:table], params[:connection])
    when 'validate_constraints'
      validate_data_constraints(params[:data], params[:constraints])
    else
      "Data quality manager: Unknown action #{action}"
    end
  end
  
  private
  
  def assess_data_quality(dataset, quality_dimensions)
    # Simulate comprehensive data quality assessment
    quality_scores = {}
    
    quality_dimensions.each do |dimension|
      case dimension
      when 'completeness'
        quality_scores[dimension] = {
          score: 94.5,
          issues: 'Missing values in 5.5% of records',
          affected_fields: ['phone_number', 'secondary_email'],
          recommendation: 'Implement validation at data entry point'
        }
      when 'accuracy'
        quality_scores[dimension] = {
          score: 92.1,
          issues: 'Invalid email formats detected',
          affected_fields: ['email_address'],
          recommendation: 'Add email validation rules'
        }
      when 'consistency'
        quality_scores[dimension] = {
          score: 96.8,
          issues: 'Minor format inconsistencies in date fields',
          affected_fields: ['created_date', 'modified_date'],
          recommendation: 'Standardize date format across all systems'
        }
      when 'timeliness'
        quality_scores[dimension] = {
          score: 88.2,
          issues: 'Data lag in real-time updates',
          affected_fields: ['last_updated'],
          recommendation: 'Optimize ETL refresh frequency'
        }
      end
    end
    
    overall_score = quality_scores.values.map { |v| v[:score] }.sum / quality_scores.length
    
    {
      dataset_name: dataset[:name] || 'customer_data',
      assessment_timestamp: Time.now,
      overall_quality_score: overall_score.round(1),
      quality_grade: grade_quality_score(overall_score),
      dimension_scores: quality_scores,
      total_records_assessed: dataset[:record_count] || 50_000,
      high_priority_issues: quality_scores.select { |k, v| v[:score] < 90 }.length,
      recommendations: generate_quality_recommendations(quality_scores)
    }.to_json
  end
  
  def detect_data_anomalies(data, detection_rules)
    # Simulate anomaly detection
    detected_anomalies = []
    
    detection_rules.each do |rule|
      case rule[:type]
      when 'statistical_outlier'
        detected_anomalies << {
          type: 'statistical_outlier',
          field: rule[:field],
          anomaly_count: rand(5..25),
          severity: 'medium',
          description: "Values exceed 3 standard deviations from mean",
          sample_values: [1_500_000, 2_100_000, 850_000]
        }
      when 'pattern_violation'
        detected_anomalies << {
          type: 'pattern_violation',
          field: rule[:field],
          anomaly_count: rand(10..50),
          severity: 'high',
          description: "Values don't match expected pattern",
          sample_values: ['invalid-email@', '123-456-78901', 'test@']
        }
      when 'referential_integrity'
        detected_anomalies << {
          type: 'referential_integrity',
          field: rule[:field],
          anomaly_count: rand(2..8),
          severity: 'high',
          description: "Foreign key references non-existent records",
          sample_values: [99999, 88888, 77777]
        }
      end
    end
    
    {
      detection_summary: {
        rules_applied: detection_rules.length,
        anomalies_found: detected_anomalies.length,
        total_records_scanned: 50_000,
        anomaly_rate: (detected_anomalies.sum { |a| a[:anomaly_count] }.to_f / 50_000 * 100).round(3)
      },
      detected_anomalies: detected_anomalies,
      severity_distribution: {
        high: detected_anomalies.count { |a| a[:severity] == 'high' },
        medium: detected_anomalies.count { |a| a[:severity] == 'medium' },
        low: detected_anomalies.count { |a| a[:severity] == 'low' }
      },
      recommended_actions: [
        'Review high-severity anomalies immediately',
        'Implement additional validation rules',
        'Consider automated anomaly detection alerts'
      ]
    }.to_json
  end
  
  def grade_quality_score(score)
    case score
    when 95..100
      'A+'
    when 90..94
      'A'
    when 85..89
      'B+'
    when 80..84
      'B'
    when 75..79
      'C+'
    when 70..74
      'C'
    else
      'D'
    end
  end
  
  def generate_quality_recommendations(quality_scores)
    recommendations = []
    
    quality_scores.each do |dimension, data|
      if data[:score] < 90
        recommendations << "Address #{dimension} issues: #{data[:recommendation]}"
      end
    end
    
    if recommendations.empty?
      recommendations << "Data quality is excellent - maintain current standards"
    end
    
    recommendations
  end
end

# ===== DATABASE OPERATIONS AGENTS =====

# Database Administrator
database_admin = RCrewAI::Agent.new(
  name: "database_administrator",
  role: "Senior Database Administrator",
  goal: "Manage database systems, ensure optimal performance, and maintain data integrity across all database operations",
  backstory: "You are an experienced database administrator with expertise in multiple database systems, performance optimization, and database security. You excel at maintaining high-availability database environments.",
  tools: [
    DatabaseConnectionTool.new,
    RCrewAI::Tools::FileWriter.new
  ],
  verbose: true
)

# Data Analyst
data_analyst = RCrewAI::Agent.new(
  name: "database_data_analyst",
  role: "Database Analytics Specialist",
  goal: "Perform complex database queries, analyze data patterns, and generate insights from database systems",
  backstory: "You are a data analyst with deep SQL expertise and statistical knowledge. You excel at writing complex queries and extracting meaningful insights from large datasets.",
  tools: [
    DatabaseConnectionTool.new,
    RCrewAI::Tools::FileReader.new,
    RCrewAI::Tools::FileWriter.new
  ],
  verbose: true
)

# ETL Specialist
etl_specialist = RCrewAI::Agent.new(
  name: "etl_specialist",
  role: "ETL Process Engineer",
  goal: "Design and implement efficient ETL processes for data integration and transformation across systems",
  backstory: "You are an ETL expert with experience in data integration, transformation pipelines, and data warehouse management. You excel at creating efficient data processing workflows.",
  tools: [
    ETLProcessingTool.new,
    DatabaseConnectionTool.new,
    RCrewAI::Tools::FileWriter.new
  ],
  verbose: true
)

# Performance Optimizer
performance_optimizer = RCrewAI::Agent.new(
  name: "database_performance_optimizer",
  role: "Database Performance Specialist",
  goal: "Monitor and optimize database performance, identify bottlenecks, and implement performance improvements",
  backstory: "You are a database performance expert who specializes in query optimization, index tuning, and system performance monitoring. You excel at identifying and resolving performance issues.",
  tools: [
    DatabaseConnectionTool.new,
    RCrewAI::Tools::FileWriter.new
  ],
  verbose: true
)

# Data Quality Manager
quality_manager = RCrewAI::Agent.new(
  name: "data_quality_manager",
  role: "Data Quality Assurance Specialist",
  goal: "Ensure data quality, implement validation rules, and maintain data integrity standards",
  backstory: "You are a data quality expert with expertise in data validation, anomaly detection, and quality assurance processes. You excel at implementing comprehensive data quality frameworks.",
  tools: [
    DataQualityTool.new,
    DatabaseConnectionTool.new,
    RCrewAI::Tools::FileWriter.new
  ],
  verbose: true
)

# Operations Coordinator
operations_coordinator = RCrewAI::Agent.new(
  name: "database_operations_coordinator",
  role: "Database Operations Manager",
  goal: "Coordinate database operations, ensure workflow efficiency, and maintain operational excellence across all database activities",
  backstory: "You are a database operations expert who manages complex database environments and coordinates cross-functional database activities. You excel at strategic planning and operational optimization.",
  manager: true,
  allow_delegation: true,
  tools: [
    RCrewAI::Tools::FileReader.new,
    RCrewAI::Tools::FileWriter.new
  ],
  verbose: true
)

# Create database operations crew
database_crew = RCrewAI::Crew.new("database_operations_crew", process: :hierarchical)

# Add agents to crew
database_crew.add_agent(operations_coordinator)  # Manager first
database_crew.add_agent(database_admin)
database_crew.add_agent(data_analyst)
database_crew.add_agent(etl_specialist)
database_crew.add_agent(performance_optimizer)
database_crew.add_agent(quality_manager)

# ===== DATABASE OPERATIONS TASKS =====

# Database Administration Task
database_admin_task = RCrewAI::Task.new(
  name: "database_administration",
  description: "Manage database systems including connections, monitoring, backups, and maintenance. Ensure database security, optimize configurations, and maintain high availability across production systems.",
  expected_output: "Database administration report with system status, performance metrics, and maintenance recommendations",
  agent: database_admin,
  async: true
)

# Data Analysis Task
data_analysis_task = RCrewAI::Task.new(
  name: "database_data_analysis",
  description: "Perform comprehensive data analysis using complex SQL queries. Analyze customer behavior, sales trends, and operational metrics. Generate insights and recommendations based on database findings.",
  expected_output: "Data analysis report with key insights, trends, and actionable recommendations based on database analysis",
  agent: data_analyst,
  context: [database_admin_task],
  async: true
)

# ETL Processing Task
etl_processing_task = RCrewAI::Task.new(
  name: "etl_pipeline_processing",
  description: "Design and execute ETL pipelines for data integration. Extract data from multiple sources, apply transformations, and load into target systems. Ensure data quality and consistency throughout the process.",
  expected_output: "ETL processing report with pipeline execution results, data quality metrics, and integration status",
  agent: etl_specialist,
  context: [database_admin_task],
  async: true
)

# Performance Optimization Task
performance_optimization_task = RCrewAI::Task.new(
  name: "database_performance_optimization",
  description: "Monitor database performance, identify bottlenecks, and implement optimization strategies. Analyze query performance, optimize indexes, and tune database configurations for optimal performance.",
  expected_output: "Performance optimization report with analysis results, implemented optimizations, and performance improvements",
  agent: performance_optimizer,
  context: [database_admin_task, data_analysis_task],
  async: true
)

# Data Quality Management Task
data_quality_task = RCrewAI::Task.new(
  name: "data_quality_management",
  description: "Assess data quality across database systems, detect anomalies, and implement quality improvement measures. Validate data integrity, identify quality issues, and recommend remediation strategies.",
  expected_output: "Data quality assessment report with quality scores, identified issues, and improvement recommendations",
  agent: quality_manager,
  context: [etl_processing_task],
  async: true
)

# Operations Coordination Task
coordination_task = RCrewAI::Task.new(
  name: "database_operations_coordination",
  description: "Coordinate all database operations to ensure optimal performance and strategic alignment. Monitor operations across all database activities, optimize workflows, and provide strategic guidance.",
  expected_output: "Operations coordination report with workflow optimization, performance summary, and strategic recommendations",
  agent: operations_coordinator,
  context: [database_admin_task, data_analysis_task, etl_processing_task, performance_optimization_task, data_quality_task]
)

# Add tasks to crew
database_crew.add_task(database_admin_task)
database_crew.add_task(data_analysis_task)
database_crew.add_task(etl_processing_task)
database_crew.add_task(performance_optimization_task)
database_crew.add_task(data_quality_task)
database_crew.add_task(coordination_task)

# ===== DATABASE ENVIRONMENT CONFIGURATION =====

database_environment = {
  "environment_name" => "Production Database Operations",
  "database_systems" => [
    {
      "name" => "primary_postgres",
      "type" => "PostgreSQL",
      "version" => "14.5",
      "size" => "2.3TB",
      "connections" => 45,
      "max_connections" => 100
    },
    {
      "name" => "analytics_warehouse",
      "type" => "Snowflake",
      "version" => "Enterprise",
      "size" => "8.7TB",
      "connections" => 23,
      "max_connections" => 200
    },
    {
      "name" => "cache_redis",
      "type" => "Redis",
      "version" => "7.0",
      "size" => "64GB",
      "connections" => 156,
      "max_connections" => 1000
    }
  ],
  "operational_metrics" => {
    "total_databases" => 12,
    "total_tables" => 847,
    "total_records" => "45.2M",
    "daily_transactions" => "2.1M",
    "average_query_time" => "42ms",
    "uptime_percentage" => 99.97
  },
  "performance_targets" => {
    "query_response_time" => "< 100ms",
    "availability_sla" => "99.95%",
    "backup_completion" => "< 2 hours",
    "data_quality_score" => "> 95%"
  }
}

File.write("database_environment.json", JSON.pretty_generate(database_environment))

puts "🗄️ Database Operations System Starting"
puts "="*60
puts "Environment: #{database_environment['environment_name']}"
puts "Database Systems: #{database_environment['database_systems'].length}"
puts "Total Records: #{database_environment['operational_metrics']['total_records']}"
puts "Daily Transactions: #{database_environment['operational_metrics']['daily_transactions']}"
puts "="*60

# Operational status data
operational_status = {
  "system_health" => {
    "overall_status" => "healthy",
    "active_connections" => 224,
    "cpu_utilization" => 34.2,
    "memory_utilization" => 67.8,
    "disk_utilization" => 45.1,
    "network_throughput" => "125 Mbps"
  },
  "recent_operations" => [
    { "operation" => "daily_backup", "status" => "completed", "duration" => "1.8 hours" },
    { "operation" => "index_maintenance", "status" => "completed", "duration" => "45 minutes" },
    { "operation" => "etl_pipeline", "status" => "running", "progress" => "78%" },
    { "operation" => "data_validation", "status" => "completed", "issues_found" => 12 }
  ],
  "performance_metrics" => {
    "queries_per_second" => 156,
    "average_response_time" => "42ms",
    "cache_hit_ratio" => 94.5,
    "replication_lag" => "2.3s"
  }
}

File.write("operational_status.json", JSON.pretty_generate(operational_status))

puts "\n📊 Current Operational Status:"
puts "  • Overall System Health: #{operational_status['system_health']['overall_status'].upcase}"
puts "  • Active Connections: #{operational_status['system_health']['active_connections']}"
puts "  • Queries per Second: #{operational_status['performance_metrics']['queries_per_second']}"
puts "  • Average Response Time: #{operational_status['performance_metrics']['average_response_time']}"

# ===== EXECUTE DATABASE OPERATIONS =====

puts "\n🚀 Starting Database Operations Management"
puts "="*60

# Execute the database operations crew
results = database_crew.execute

# ===== OPERATIONS RESULTS =====

puts "\n📊 DATABASE OPERATIONS RESULTS"
puts "="*60

puts "Operations Success Rate: #{results[:success_rate]}%"
puts "Total Operations: #{results[:total_tasks]}"
puts "Completed Operations: #{results[:completed_tasks]}"
puts "Operations Status: #{results[:success_rate] >= 80 ? 'OPTIMAL' : 'NEEDS ATTENTION'}"

operations_categories = {
  "database_administration" => "🗄️ Database Administration",
  "database_data_analysis" => "📊 Data Analysis",
  "etl_pipeline_processing" => "🔄 ETL Processing",
  "database_performance_optimization" => "⚡ Performance Optimization",
  "data_quality_management" => "✅ Data Quality Management",
  "database_operations_coordination" => "🎯 Operations Coordination"
}

puts "\n📋 OPERATIONS BREAKDOWN:"
puts "-"*50

results[:results].each do |operation_result|
  task_name = operation_result[:task].name
  category_name = operations_categories[task_name] || task_name
  status_emoji = operation_result[:status] == :completed ? "✅" : "❌"
  
  puts "#{status_emoji} #{category_name}"
  puts "   Specialist: #{operation_result[:assigned_agent] || operation_result[:task].agent.name}"
  puts "   Status: #{operation_result[:status]}"
  
  if operation_result[:status] == :completed
    puts "   Operation: Successfully completed"
  else
    puts "   Issue: #{operation_result[:error]&.message}"
  end
  puts
end

# ===== SAVE DATABASE DELIVERABLES =====

puts "\n💾 GENERATING DATABASE OPERATIONS REPORTS"
puts "-"*50

completed_operations = results[:results].select { |r| r[:status] == :completed }

# Create database operations directory
database_dir = "database_operations_#{Date.today.strftime('%Y%m%d')}"
Dir.mkdir(database_dir) unless Dir.exist?(database_dir)

completed_operations.each do |operation_result|
  task_name = operation_result[:task].name
  operation_content = operation_result[:result]
  
  filename = "#{database_dir}/#{task_name}_report.md"
  
  formatted_report = <<~REPORT
    # #{operations_categories[task_name] || task_name.split('_').map(&:capitalize).join(' ')} Report
    
    **Database Specialist:** #{operation_result[:assigned_agent] || operation_result[:task].agent.name}  
    **Operations Date:** #{Time.now.strftime('%B %d, %Y')}  
    **Environment:** #{database_environment['environment_name']}
    
    ---
    
    #{operation_content}
    
    ---
    
    **Environment Context:**
    - Database Systems: #{database_environment['database_systems'].length}
    - Total Records: #{database_environment['operational_metrics']['total_records']}
    - Daily Transactions: #{database_environment['operational_metrics']['daily_transactions']}
    - Uptime: #{database_environment['operational_metrics']['uptime_percentage']}%
    
    *Generated by RCrewAI Database Operations System*
  REPORT
  
  File.write(filename, formatted_report)
  puts "  ✅ #{File.basename(filename)}"
end

# ===== DATABASE OPERATIONS DASHBOARD =====

database_dashboard = <<~DASHBOARD
  # Database Operations Dashboard
  
  **Environment:** #{database_environment['environment_name']}  
  **Last Updated:** #{Time.now.strftime('%Y-%m-%d %H:%M:%S')}  
  **Operations Success Rate:** #{results[:success_rate]}%
  
  ## Environment Overview
  
  ### Database Systems Status
  | System | Type | Size | Connections | Status |
  |--------|------|------|-------------|---------|
  | Primary PostgreSQL | #{database_environment['database_systems'][0]['type']} | #{database_environment['database_systems'][0]['size']} | #{database_environment['database_systems'][0]['connections']}/#{database_environment['database_systems'][0]['max_connections']} | 🟢 Healthy |
  | Analytics Warehouse | #{database_environment['database_systems'][1]['type']} | #{database_environment['database_systems'][1]['size']} | #{database_environment['database_systems'][1]['connections']}/#{database_environment['database_systems'][1]['max_connections']} | 🟢 Healthy |
  | Cache Redis | #{database_environment['database_systems'][2]['type']} | #{database_environment['database_systems'][2]['size']} | #{database_environment['database_systems'][2]['connections']}/#{database_environment['database_systems'][2]['max_connections']} | 🟢 Healthy |
  
  ### Performance Metrics
  - **Total Databases:** #{database_environment['operational_metrics']['total_databases']}
  - **Total Tables:** #{database_environment['operational_metrics']['total_tables']}
  - **Total Records:** #{database_environment['operational_metrics']['total_records']}
  - **Daily Transactions:** #{database_environment['operational_metrics']['daily_transactions']}
  - **Average Query Time:** #{database_environment['operational_metrics']['average_query_time']}
  - **System Uptime:** #{database_environment['operational_metrics']['uptime_percentage']}%
  
  ## Current System Health
  
  ### Resource Utilization
  - **CPU Usage:** #{operational_status['system_health']['cpu_utilization']}%
  - **Memory Usage:** #{operational_status['system_health']['memory_utilization']}%
  - **Disk Usage:** #{operational_status['system_health']['disk_utilization']}%
  - **Network Throughput:** #{operational_status['system_health']['network_throughput']}
  - **Active Connections:** #{operational_status['system_health']['active_connections']}
  
  ### Performance Indicators
  - **Queries per Second:** #{operational_status['performance_metrics']['queries_per_second']}
  - **Average Response Time:** #{operational_status['performance_metrics']['average_response_time']}
  - **Cache Hit Ratio:** #{operational_status['performance_metrics']['cache_hit_ratio']}%
  - **Replication Lag:** #{operational_status['performance_metrics']['replication_lag']}
  
  ## Recent Operations
  
  ### Operation Status
  #{operational_status['recent_operations'].map do |op|
    status_icon = case op['status']
                  when 'completed' then '✅'
                  when 'running' then '🔄'
                  when 'failed' then '❌'
                  else '⚠️'
                  end
    "- #{status_icon} **#{op['operation'].gsub('_', ' ').split.map(&:capitalize).join(' ')}:** #{op['status']}"
  end.join("\n")}
  
  ## Operations Components Status
  
  ### Database Administration
  ✅ **Database Management:** All systems monitored and maintained  
  ✅ **Connection Management:** Optimal connection pooling active  
  ✅ **Backup Operations:** Automated backups completing successfully  
  ✅ **Security Monitoring:** Access controls and audit logs active
  
  ### Data Analysis  
  ✅ **Query Performance:** Complex analytics queries optimized  
  ✅ **Data Insights:** Business intelligence reports generated  
  ✅ **Trend Analysis:** Customer and sales patterns identified  
  ✅ **Reporting:** Automated dashboards and alerts configured
  
  ### ETL Processing
  ✅ **Data Integration:** Multi-source ETL pipelines operational  
  ✅ **Transformation Logic:** Data cleansing and normalization active  
  ✅ **Load Operations:** Target system updates completing successfully  
  ✅ **Quality Validation:** Data quality checks passing
  
  ### Performance Optimization
  ✅ **Query Optimization:** Slow queries identified and optimized  
  ✅ **Index Management:** Index usage analysis and optimization  
  ✅ **Configuration Tuning:** Database parameters optimized  
  ✅ **Monitoring:** Real-time performance monitoring active
  
  ### Data Quality Management
  ✅ **Quality Assessment:** Comprehensive data quality scoring  
  ✅ **Anomaly Detection:** Automated anomaly detection active  
  ✅ **Validation Rules:** Data integrity constraints enforced  
  ✅ **Quality Reports:** Regular quality assessments generated
  
  ## SLA Compliance
  
  ### Performance Targets
  - **Query Response Time:** #{operational_status['performance_metrics']['average_response_time']} (Target: #{database_environment['performance_targets']['query_response_time']}) ✅
  - **System Availability:** #{database_environment['operational_metrics']['uptime_percentage']}% (Target: #{database_environment['performance_targets']['availability_sla']}) ✅
  - **Backup Completion:** #{operational_status['recent_operations'].find { |op| op['operation'] == 'daily_backup' }&.dig('duration') || '1.8 hours'} (Target: #{database_environment['performance_targets']['backup_completion']}) ✅
  - **Data Quality Score:** 96.8% (Target: #{database_environment['performance_targets']['data_quality_score']}) ✅
  
  ## Alerts and Recommendations
  
  ### Current Alerts
  - **Info:** Memory utilization at 67.8% - within normal range
  - **Info:** ETL pipeline at 78% completion - on schedule
  - **Warning:** 12 data quality issues identified - review recommended
  
  ### Optimization Opportunities
  - **Index Optimization:** 3 tables could benefit from additional indexes
  - **Query Performance:** 2 slow queries identified for optimization
  - **Storage Management:** Consider archiving data older than 2 years
  - **Connection Pooling:** Optimize pool sizes for peak usage patterns
  
  ## Next Maintenance Window
  
  ### Scheduled Activities (Next Weekend)
  - [ ] Database statistics update (ANALYZE)
  - [ ] Index maintenance and cleanup
  - [ ] Archive old transaction logs
  - [ ] Performance baseline updates
  
  ### Strategic Initiatives (Next Month)
  - [ ] Implement automated failover testing
  - [ ] Enhance monitoring and alerting
  - [ ] Expand data quality validation rules
  - [ ] Optimize ETL pipeline performance
DASHBOARD

File.write("#{database_dir}/database_operations_dashboard.md", database_dashboard)
puts "  ✅ database_operations_dashboard.md"

# ===== DATABASE OPERATIONS SUMMARY =====

database_summary = <<~SUMMARY
  # Database Operations Executive Summary
  
  **Environment:** #{database_environment['environment_name']}  
  **Operations Review Date:** #{Time.now.strftime('%B %d, %Y')}  
  **Operations Success Rate:** #{results[:success_rate]}%
  
  ## Executive Overview
  
  The comprehensive database operations management system has successfully maintained and optimized our production database environment, ensuring high availability, optimal performance, and data quality across #{database_environment['database_systems'].length} database systems. With #{database_environment['operational_metrics']['uptime_percentage']}% uptime and #{operational_status['performance_metrics']['queries_per_second']} queries per second, our database infrastructure continues to exceed performance targets.
  
  ## Operational Excellence Achieved
  
  ### Database Administration Excellence
  - **System Management:** All #{database_environment['database_systems'].length} database systems operating at optimal levels
  - **Connection Management:** #{operational_status['system_health']['active_connections']} active connections managed efficiently
  - **Backup Operations:** Automated backups completing in 1.8 hours (target: < 2 hours)
  - **Security Compliance:** Full access control and audit logging maintained
  
  ### Performance Optimization Success
  - **Query Performance:** #{operational_status['performance_metrics']['average_response_time']} average response time (target: < 100ms)
  - **Cache Efficiency:** #{operational_status['performance_metrics']['cache_hit_ratio']}% cache hit ratio maintained
  - **System Utilization:** Balanced resource utilization across CPU (34.2%), memory (67.8%), disk (45.1%)
  - **Throughput:** #{operational_status['performance_metrics']['queries_per_second']} queries per second sustained
  
  ### Data Quality & Integrity
  - **Quality Score:** 96.8% data quality maintained (target: > 95%)
  - **Data Volume:** #{database_environment['operational_metrics']['total_records']} records across #{database_environment['operational_metrics']['total_tables']} tables
  - **Transaction Processing:** #{database_environment['operational_metrics']['daily_transactions']} daily transactions processed
  - **Data Validation:** Comprehensive quality checks and anomaly detection active
  
  ### ETL & Data Integration
  - **Pipeline Operations:** Multi-source ETL pipelines processing 15,000+ records efficiently
  - **Data Transformation:** 98.3% success rate in data transformation processes
  - **Integration Quality:** 96.8% data quality score maintained throughout ETL processes
  - **Processing Efficiency:** 6.8-minute average pipeline execution time
  
  ## System Architecture & Performance
  
  ### Database Systems Overview
  - **Primary PostgreSQL:** 2.3TB production database with 45/100 connections utilized
  - **Analytics Warehouse (Snowflake):** 8.7TB data warehouse with 23/200 connections
  - **Cache Layer (Redis):** 64GB cache with 156/1000 connections for optimal performance
  
  ### Performance Metrics Excellence
  - **Response Time:** 42ms average (58ms under target threshold)
  - **Availability:** 99.97% uptime (exceeding 99.95% SLA)
  - **Throughput:** 156 queries/second with room for growth
  - **Resource Efficiency:** Optimal utilization across all system components
  
  ## Business Impact Delivered
  
  ### Operational Efficiency
  - **Automated Operations:** 85% of routine tasks automated, reducing manual effort
  - **Performance Consistency:** Maintained sub-100ms response times during peak loads
  - **Cost Optimization:** Efficient resource utilization reducing infrastructure costs by 20%
  - **Reliability:** 99.97% uptime ensuring business continuity
  
  ### Data-Driven Decision Support
  - **Real-Time Analytics:** Live dashboards supporting strategic decision-making
  - **Historical Analysis:** Comprehensive trend analysis across 2+ years of data
  - **Predictive Insights:** Advanced analytics supporting forecasting and planning
  - **Quality Assurance:** High-quality data foundation for all business applications
  
  ### Risk Mitigation
  - **Disaster Recovery:** Comprehensive backup and recovery procedures tested and verified
  - **Security Compliance:** Full audit trails and access controls meeting regulatory requirements
  - **Performance Monitoring:** Proactive monitoring preventing issues before impact
  - **Data Protection:** Multi-layer data protection ensuring information security
  
  ## Technical Achievements
  
  ### ✅ Database Administration
  - **Infrastructure Management:** Optimal configuration and maintenance of all database systems
  - **Capacity Planning:** Proactive resource management supporting business growth
  - **Security Implementation:** Comprehensive security measures protecting sensitive data
  - **Disaster Recovery:** Tested backup and recovery procedures ensuring business continuity
  
  ### ✅ Advanced Data Analysis
  - **Complex Query Optimization:** Sophisticated analytics queries running efficiently
  - **Business Intelligence:** Comprehensive reporting supporting strategic decisions
  - **Pattern Recognition:** Advanced analysis identifying trends and opportunities
  - **Performance Monitoring:** Real-time analysis of system and business metrics
  
  ### ✅ ETL Pipeline Excellence
  - **Multi-Source Integration:** Seamless data integration from diverse sources
  - **Quality Transformation:** Data cleansing and normalization ensuring consistency
  - **Automated Processing:** Scheduled pipelines maintaining data freshness
  - **Error Handling:** Robust error recovery ensuring reliable data processing
  
  ### ✅ Performance Optimization
  - **Query Tuning:** Continuous optimization of database query performance
  - **Index Management:** Strategic index design and maintenance
  - **Resource Optimization:** Balanced utilization of system resources
  - **Monitoring Integration:** Comprehensive performance monitoring and alerting
  
  ### ✅ Data Quality Management
  - **Quality Assessment:** Multi-dimensional quality scoring across all datasets
  - **Anomaly Detection:** Automated identification of data quality issues
  - **Validation Framework:** Comprehensive rules ensuring data integrity
  - **Continuous Improvement:** Ongoing enhancement of quality processes
  
  ### ✅ Operations Coordination
  - **Workflow Integration:** Coordinated operations across all database functions
  - **Strategic Planning:** Long-term capacity and performance planning
  - **Team Coordination:** Effective collaboration across database specialties
  - **Performance Management:** Comprehensive oversight ensuring operational excellence
  
  ## Strategic Value Creation
  
  ### Infrastructure Foundation
  - **Scalable Architecture:** Database infrastructure supporting 10x growth potential
  - **High Availability:** 99.97% uptime supporting critical business operations
  - **Performance Excellence:** Consistent sub-100ms response times across all systems
  - **Security Assurance:** Comprehensive protection of business-critical data
  
  ### Business Intelligence Platform
  - **Real-Time Insights:** Live analytics supporting immediate decision-making
  - **Historical Analysis:** Deep analysis of trends and patterns over time
  - **Predictive Capabilities:** Advanced analytics supporting forecasting needs
  - **Self-Service Analytics:** Empowering business users with direct data access
  
  ### Operational Efficiency
  - **Automation Leadership:** 85% task automation reducing operational overhead
  - **Proactive Management:** Issue prevention through comprehensive monitoring
  - **Resource Optimization:** Efficient utilization reducing infrastructure costs
  - **Continuous Improvement:** Ongoing optimization of processes and performance
  
  ## Future Enhancement Roadmap
  
  ### Near-Term Improvements (Next 30 Days)
  - **Performance Tuning:** Optimize 3 identified slow queries
  - **Index Enhancement:** Implement strategic indexes for improved performance
  - **Monitoring Expansion:** Enhanced alerting for proactive issue detection
  - **Quality Rules:** Expand data validation rules for improved quality
  
  ### Strategic Development (Next 90 Days)
  - **Automated Failover:** Implement automated disaster recovery testing
  - **Advanced Analytics:** Deploy machine learning for predictive maintenance
  - **Data Archival:** Implement automated archival for historical data
  - **Performance Baselines:** Establish advanced performance benchmarking
  
  ### Innovation Pipeline (6+ Months)
  - **Cloud Migration:** Strategic cloud adoption for enhanced scalability
  - **AI Integration:** Machine learning integration for intelligent operations
  - **Real-Time Processing:** Stream processing capabilities for immediate insights
  - **Advanced Security:** Next-generation security and compliance measures
  
  ## Return on Investment
  
  ### Quantifiable Benefits
  - **Cost Reduction:** 20% infrastructure cost reduction through optimization
  - **Efficiency Gains:** 85% task automation saving 40+ hours/week
  - **Performance Improvement:** 30% query performance improvement over baseline
  - **Reliability Enhancement:** 99.97% uptime vs. 99.8% industry average
  
  ### Strategic Value
  - **Business Continuity:** Reliable foundation for all business operations
  - **Decision Support:** High-quality data enabling strategic decision-making
  - **Competitive Advantage:** Advanced analytics capabilities supporting growth
  - **Risk Mitigation:** Comprehensive security and disaster recovery protection
  
  ## Conclusion
  
  The Database Operations Management system has successfully established and maintained a world-class database infrastructure that exceeds performance targets while ensuring high availability, data quality, and operational efficiency. With #{results[:success_rate]}% operational success across all functions, the system provides a solid foundation for continued business growth and strategic advantage.
  
  ### Operations Status: EXCELLENCE ACHIEVED
  - **All performance targets exceeded consistently**
  - **Comprehensive database operations management delivered**
  - **High availability and data quality maintained**
  - **Strategic foundation established for future growth**
  
  ---
  
  **Database Operations Team Performance:**
  - Database administrators maintained exceptional system reliability and security
  - Data analysts delivered comprehensive insights supporting strategic decisions
  - ETL specialists ensured seamless data integration and transformation
  - Performance optimizers achieved superior system performance and efficiency
  - Data quality managers maintained exceptional data integrity standards
  - Operations coordinators provided strategic oversight and workflow optimization
  
  *This comprehensive database operations management system demonstrates the power of specialized expertise working in coordination to deliver exceptional database performance, reliability, and business value.*
SUMMARY

File.write("#{database_dir}/DATABASE_OPERATIONS_SUMMARY.md", database_summary)
puts "  ✅ DATABASE_OPERATIONS_SUMMARY.md"

puts "\n🎉 DATABASE OPERATIONS MANAGEMENT COMPLETED!"
puts "="*70
puts "📁 Complete database operations package saved to: #{database_dir}/"
puts ""
puts "🗄️ **Operations Summary:**"
puts "   • #{completed_operations.length} database operations completed successfully"
puts "   • #{database_environment['database_systems'].length} database systems managed"
puts "   • #{database_environment['operational_metrics']['uptime_percentage']}% system uptime maintained"
puts "   • #{operational_status['performance_metrics']['average_response_time']} average query response time"
puts ""
puts "📊 **Performance Metrics:**"
puts "   • #{operational_status['performance_metrics']['queries_per_second']} queries per second processed"
puts "   • #{operational_status['performance_metrics']['cache_hit_ratio']}% cache hit ratio"
puts "   • #{database_environment['operational_metrics']['total_records']} total records managed"
puts "   • #{database_environment['operational_metrics']['daily_transactions']} daily transactions processed"
puts ""
puts "🎯 **Operational Excellence:**"
puts "   • All SLA targets exceeded consistently"
puts "   • 96.8% data quality score maintained"
puts "   • Comprehensive ETL pipelines operational"
puts "   • Advanced performance optimization active"

Key Database Operations Features

1. Comprehensive Database Management

Full-spectrum database operations with specialized expertise:

database_admin           # System administration and maintenance
data_analyst            # Complex queries and business intelligence  
etl_specialist          # Data integration and transformation
performance_optimizer   # Performance tuning and monitoring
quality_manager         # Data quality assurance and validation
operations_coordinator  # Strategic oversight and coordination (Manager)

2. Advanced Database Tools

Specialized tools for professional database operations:

DatabaseConnectionTool   # Multi-database connectivity and operations
ETLProcessingTool       # Extract, Transform, Load operations
DataQualityTool        # Quality assessment and anomaly detection

3. Multi-Database Support

Professional database system integration:

  • PostgreSQL production databases
  • Snowflake data warehouses
  • Redis caching layers
  • Cross-system ETL pipelines

4. Performance Excellence

Comprehensive performance monitoring and optimization:

  • Query performance analysis and optimization
  • Index management and tuning
  • Resource utilization monitoring
  • Proactive performance optimization

5. Data Quality Framework

Multi-dimensional quality assurance:

# Quality management workflow
Administration  Analysis  ETL Processing 
Performance Optimization  Quality Management  Coordination

This database operations system provides a complete framework for managing enterprise database environments, ensuring high availability, optimal performance, and exceptional data quality while supporting strategic business objectives.